Pulse-Firing Neural Chips for Hundreds of Neurons

نویسندگان

  • Michael Brownlow
  • Lionel Tarassenko
  • Alan F. Murray
  • Alister Hamilton
  • Il Song Han
  • H. Martin Reekie
چکیده

Alister Hamilton II Song Han(l) H. Martin Reekie Dept. Electrical Eng. U niv. of Edinburgh We announce new CMOS synapse circuits using only three and four MOSFETsisynapse. Neural states are asynchronous pulse streams, upon which arithmetic is performed directly. Chips implementing over 100 fully programmable synapses are described and projections to networks of hundreds of neurons are made. 1 OVERVIEW OF PULSE FIRING NEURAL VLSI The inspiration for the use of pulse firing in silicon neural networks is clearly the electrical/chemical pulse mechanism in "real" biological neurons. Asynchronous, digital voltage pulses are used to signal states t Si ) through synapse weights { Tij } to emulate neural dynamics. Neurons fire voltage pulses of a frequency determined by their level of activity but of a constant magnitude (usually 5 Volts) [Murray,1989a]. As indicated in Fig. 1, synapses perform arithmetic directly on these asynchronous pulses, to increment or decrement the receiving neuron's activity. The activity of a receiving neuron i, Xi is altered at a frequency controlled by the sending neuron j, with state Sj by an amount determined by the synapse weight (here, T ij ). 1 On secondment from the Korean Telecommunications Authority 786 Brownlow, Tarassenko, Murray, Hamilton, Han and Reekie

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The firing rate of neurons in the nucleus cuneiformis in response to formalin in male rat

Introduction: Although formalin-induced activity in primary afferent fibers and spinal dorsal ‎horn is well described, the midbrain neural basis underlying each phase of behavior in ‎formalin test has not been clarified. The present study was designed to investigate the nucleus ‎cuneiformis (CnF)‎‏ ‏neuronal responses during two phases after subcutaneous injection of ‎formalin into the hind paw...

متن کامل

Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns

Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...

متن کامل

Stochastic Synchrony of Chaos in a Pulse-Coupled Neural Network with Both Chemical and Electrical Synapses Among Inhibitory Neurons

The synchronous firing of neurons in a pulse-coupled neural network composed of excitatory and inhibitory neurons is analyzed. The neurons are connected by both chemical synapses and electrical synapses among the inhibitory neurons. When electrical synapses are introduced, periodically synchronized firing as well as chaotically synchronized firing is widely observed. Moreover, we find stochasti...

متن کامل

Effect of aqueous extract of Drosera Spatulata on firing rate of paragigantocellularis nucleus neurons after pain induction by formalin in rats

Introduction: Previously, we demonstrated that i.p. injection of aqueous extract prepared from aerial parts of Drosera Spatulata (Droseraceae) can induced remarkable analgesia in both phases of formalin test in rats. Because, analgesia induced in acute phase of formalin test mainly mediated by activation of central analgesic mechanisms and also paragigantocellularis (PGi) nucleus is part of bra...

متن کامل

Forward suppression in the auditory cortex is caused by the Ca(v)3.1 calcium channel-mediated switch from bursting to tonic firing at thalamocortical projections.

Brief sounds produce a period of suppressed responsiveness in the auditory cortex (ACx). This forward suppression can last for hundreds of milliseconds and might contribute to mechanisms of temporal separation of sounds and stimulus-specific adaptation. However, the mechanisms of forward suppression remain unknown. We used in vivo recordings of sound-evoked responses in the mouse ACx and whole-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1989